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1.0 INTRODUCTION

The performance of a sonar system in a specified ocean environ-

ment can be predicted for what occurs on the average, but not with great

accuracy. There may be an untold number of reasons for prediction

inaccuracies. The majority of such inaccuracies are usually attributed

to the propagation loss model. As a consequence, evaluation of the

predictive capability of propagation models (and acoustic models gen-

erally) is a topic of importance.

1.1 OBJECTIVE

The objective of this effort is to review acoustic model eval-

uation procedures. In an attempt to achieve greater clarity, attention

is focused on the evaluation of propagation models. Most of the methods

discussed here, however, are also applicable to reverberation models

and, with some modifications, to ambient noise models.

1.2 BACKGROUND

The proliferation of sonar system performance prediction model

development activity over the past decade is yielding a growing stock-

pile of models, some more accurate than others. As a consequence, those

who use performance prediction models in analyzing competing design

concepts are faced with the dilemma of selecting the "best" model.

Unfortunately, assessing the merits of several candidate models, each

programmed on a different computer, is a difficult task.

A related problem pertains to the validation of R&D models.

Numerous propagation and ambient noise models have been developed under

• _ .



6.2 funded programs. The rationale for this activity varies from case

to case, but typically the requirement is based on either greater accur-

acy or higher computational speed. Whatever the reason, once a mathe-

matical model has been transformed into a computer program it must then

be subjected to test and evaluation procedures. Far too often the

evaluation procedure employed by the model developer is too casual to

engender high confidence in the model.

Many of the problems associated with model evaluation

procedures can be rectified by community standardization. In an effort

to achieve this standardization, the Acoustic Model Evaluation Committee

(AMEC) was recently established. AMEC is comprised of representatives

from Navy and university laboratories. It is chartered by OP-095E to

establish a management structure and administrative procedures to

evaluate environmental acoustic models of propagation, noise, and

reverberation.

Prior to the conception of AMEC some work was accomplished in

this endeavor by the Naval Underwater Systems Center (NUSC/NLL) under

the guidance of the Panel On Sonar System Models (POSSM), and by the

Acoustic Environmental Support Detachment (AESD) within the Model Evalu-

ation Program (MEP). The procedures developed by POSSM and MEP are

reviewed in section 3.

The POSSM/MEP review is preceded by a brief discussion of

"conventional" evaluation methodology. This discussion provides back-

ground from which the unannointed reader should glean some appreciation

of the problem. Following the POSSM/MEP review, several measures of

2



closeness suggested by procedures employed in hypothesis testing are

discussed.

2.0 CONVENTIONAL EVALUATION METHODOLOGY

This section presents two aspects of conventional model evalu-

ation methodology: (a) graphical comparisons and (b) insufficient

replications. Their deficiencies are examined and exploited in sub-

sequent sections asthe rationale for evaluation strategies.

2.1 GRAPHICAL COMPARISONS

The procedure adopted by most model developers in assessing the

accuracy of their product involves little more than overlaying plots of

predictions on plots of measurements. Sometimes this procedure is

extended by a brief examination of model response to variations in the

controlling input parameters. More often than not, however, the model

developer is so pleased with the obvious coincidence between predictions

and measurements (within 10 dB all the way!) that further evaluation is

deemed superfluous.

Graphical comparisons and sensitivity analyses are certainly

important steps in the model evaluation process. They are especially

useful in detecting gross departures of theory from experiment. Their

usefulness and importance notwithstanding, these simple procedures lack

the quantitative elements necessary to compare the performance of one

model with that of another.

3



As demonstrated by figures I through 4 (from Forman [1975)),

sole reliance on graphical comparisons does not always yield satisfac-

tory conclusions. Curves generated by different models are superimposed

on plots of measured data points. The graphical comparisons displayed

in figure 1 are unambiguous in that the top curve obviously predicts

better than the bottom curve. In this instance the two curves are

separated by 8 or 9 dB, with one curve falling in the middle of the

scattered data points and the other curve on the periphery of points.

The situation depicted in figure 2 is less clear, however, because even

though the proximity of curves to data points is similar to the previous

case, the two curves are only 2 to 3 dB apart. Figure 3 illustrates

curves generated by four different models. There is no question about

which curve is the best predictor, but even the best curve displays a

significant lack of fit. Of the three curves plotted in figure 4, the

solid curve is obviously out of contention, but the predictive ability

of the remaining two curves appears to be about the same, yielding an

indeterminant circumstance.

1. Forman, L, Comparative Evaluation Methods for Propagation Loss Models,

Computer Sciences Corporation Unpublished Report, Jul 1975.

4
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1

2.2 INSUFFICIENT REPLICATIONS

To compound the problems of indeterminacy, data sets available

for graphical comparisons far too often are insufficient in sample size,

replications, and variety of conditions. The lack of replications

probably represents the most frustrating deficiency among acoustic data

sets. Apparently, at-sea measurement exercises are based on the asser-

tion that independent measurements are unique. Moreover, experimental

designs allowing for only two or three replications are apt to be as

inconclusive as designs allowing for only one. Only when an experiment

is replicated sufficiently is there likely to be a convergence of

observed averages.

The question of what constitutes sufficient replication is

beyond the scope of this discussion but, as an example of insufficient

replication, consider the situation illustrated in figure 5. The two

data sets were recorded simultaneously by two similar receiving arrays

being towed away from a single source. The arrays were towed along

parallel tracks within a few miles of each other, so that the propa-

gation conditions were nearly identical. The dots represent data

recorded on the SP LEE and the open circles represent data recorded on

the USS BRONSTEIN. Of particular interest are the convergence zone (CZ)

regions. The BRONSTEIN data have the leading edges at 29.5 nmi and 65

nmi, and the LEE data have them at 31 nmi and 62 nmi - an anomalous

inversion. The relative amplitudes are also inverted from the first CZ

to the second.

7
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Admittedly, these two data sets do not quite qualify as repli-

cations, but there is no evidence to suggest that the measurement con-

ditions were substantially different. No matter what the sources of

error or randomness, this example tends to illustrate that events do not

recur precisely.

More to the point, however, only one sound velocity profile was

obtained at the site, so that any predictions based on it would be

expected to coincide equally well with both measured data sets. Such an

expectation is contradictory unless the average of the two data sets is

accepted as truth. Caution must be exercised in following such a

practice, since the credibility of conclusions drawn from averages is

more or less proportional to the number of data sets included.

8



2.3 CONSEQUENTIAL STRATEGIES

The indeterminate nature of graphical comparisons and the

inadequate statistical base afforded by most acoustic data sets suggest

two fundamental strategies. First, graphical comparisons should be

-, complemented by quantitative measures of closeness. Second, similar-

ities among data sets should be exploited to synthesize ensembles of

(pseudo) replications.

9



3.0 POSSM AND MEP PROCEDURES

Two formal model evaluation efforts have emerged in recent

years within the Navy's ocean acoustics community. One of these (POSSM)

was a 6.2-funded effort sponsored by the Naval Sea Systems Command

(06H1), and the other (MEP) was a 6.3 funded effort carried out by the

Acoustic Environmental Support Detachment (AESD). Some of their accom-

plishments are reviewed here.

3.1 POSSM PROCEDURES

The Panel on Sonar System Models (POSSM) was established in

1973 and chartered by the Sonar Technology Office (NAVSEA 06H1) to

evaluate and make recommendations concerning propagation, ambient noise,

and reverberation models to be used in NAVSEA sponsored sonar system

programs. The philosophy adopted by POSSM immediately eclipsed the

notion of recommending any single model to encompass the wide spectrum

of potential tactical sonar applications. Instead, the model evaluation

process would consist of assessing the attributes of candidate models

and making these assessment findings available to NAVSEA users. The

user could then select a model in accordance with requirements.

The membership of POSSM is comprised of system development

engineers and acoustic model developers from the Navy laboratories.

Model evaluation objectives and techniques are discussed at POSSM meet-

ings, but most of the actual work involved in developing and imple-

menting evaluation procedures has been accomplished at the Naval Under-

water Systems Center (NUSC), New London Laboratory, under the direction

of RB Lauer. The model accuracy assessment procedures adopted by POSSM

10



evolved from a methodology developed by Lauer and Skory [19753.2 A

brief account of POSSM model evaluation procedures is also presented in

3a technical report by DiNapoli [1975).

In addition to model accuracy assessment, several other factors

enter into model appraisal. Altogether the factors selected by POSSM

include:

accuracy

execution time

storage requirements

implementation ease

execution complexity

program alteration ease

auxiliary outputs.

The first three factors lend themselves to quantitative description;

whereas, the remaining factors elude precise definition and tend to

accede to subjective specification. All of these factors are described

2. Lauer, RB and Skory, J, The Quantitative Comparison of Model
Outputs with Experimental Data - A STAMP Program Application,
Naval Underwater Systems Center TM TA11-46-75, 15 Jul 1975.

3. DiNapoli, FR, Computer Models for Underwater Sound Propagation,
Naval Underwater Systems Center TO 5276, 31 Oct 1975.

11



in the "POSSM Reports" [Lauer and Sussman, 1976 and 19793 4 ,5 but brief

descriptions of the last four factors are presented here for clarity.

Implementation ease relates to the level of difficulty involved

in transforming a program from one machine to another and in becoming

familiar with its operation.

Execution complexity pertains to input data requirements,

especially as regards special control parameters peculiar to computa-

tional methods employed.

Program alteration ease bears on how well program documentation

t facilitates minor software modifications to improve efficiency or to

accommodate special machine features.

Auxiliary outputs refers to outputs other than propagation loss

versus range; for example, ray diagrams, travel time, or arrival angle

structure.

4. Lauer, RB and Sussman, B, A Methodology for the Comparison of Models
for Sonar Systems Applications, Volume I, Naval Sea Systems Command
Report SEA 06H1/O36-EVA/MOST-1O, 9 Dec 1976.

5. Lauer, RB and Sussman, B, A Methodology for the Comparison of Models
for Sonar System Applications, Volume II, Naval Sea Systems Command
Report SEAO6HI/036-EVA/MOST-11 (to be released).

12



One aspect of any model evaluation methodology that is likely

to evoke controversy is the "objective" determination of model accuracy.

The most straightforward approach entails forming residuals by taking

the point-wise differences between measurements and predictions and then

characterizing accuracy in terms of mean and standard deviations. This

simple procedure has merit, but it also is susceptible to justified

criticism. Much of the criticism stems from the stochastic character of

measured data being somehow incompatible with the deterministi char-

acter of predictions. More specifically, second and higher order

moments of measured data typically exhibit variation with range -- indi-

cating range dependent distribution characteristics. As a consequence,

a single, range-independent measure of accuracy is not likely to en-

gender high confidence. On the other hand, the task of evaluating 20 or

so models against several measured data sets or standards of comparison

provides strong impetus to compress the number of accuracy measures to a

minimum.

3.1.1 FIRST IMPLEMENTATION

In its first report [Lauer and Sussman, 1976]4 dealing with

model evaluation methodology, POSSM attempts to treat this problem by

comparing predictions to measurements (PARKA) in 20-kyd range sub-

intervals over a total span of 100 kyds. The choice of 20-kyd intervals

represents a compromise between two considerations: large enough to

contain a sufficient number of sample points and small enough to con-

strain range-dependent features per subinterval to a minimum. Within

each subinterval the mean and the standard deviations of residuals are

13



calculated. These results are then compressed into a single cumulative

accuracy measure (CAM), defined as the sum of weighted averages of

subinterval means and standard deviations. Mathematically CAM breaks

down as

CAM CAM (1) + CAM (a),

where

N Mn N

CAM(P) = jI Wn I / >1 Mn

n=1 m=1 n=l

and

CAM(a) = W'nm nm Mn

N is the number of cases compared against, Mn is the number of sub-

intervals for each case, and the Wnm and W' nm are weights that permit

the relative importance of subintervals to be specified.

3.1.2 SECOND IMPLEMENTATION

A second volume similar to the first, but much more extensive

in scope, [Lauer and Sussman, 1979] 5 has been issued by POSSM. Twelve

models are evaluated against Hays-Murphy Mediterranean Sea data. The

evaluation procedures employed in volume I are again employed in volume

II, with only minor differences. One of these differences, for example,

is the way in which the total range interval (200 km) is divided into

subintervals. Instead of equal length intervals, a model (RAYMODE X) is

used to delineate direct path, bottom bounce, and convergence zone

14



boundaries out to the second bottom bounce region. Beyond this region

the subintervals assume an arbitrary length of 50 km. The reason for

using a model instead of the measured data to define subintervals is the

lack of distinguishable structure in the data. Otherwise a model-based

delineation scheme would be severely criticized.

The evaluation procedures that have evolved by virtue of POSSM

represent the concerns of both model developers and model users. The

two reports issued by POSSM (previously cited) reflect this evolutionary

character as well as a certain amount of flexibility in procedure imple-

mentation. The format generally followed in both reports is presented

in figure 6, and the steps followed in assessing model accuracy are as

outlined in figure 7. Figures 8 through 10 illustrate how summary data

pertaining to accuracy, speed, and storage requirements are presented

(taken from volume II).

3.2 MEP PROCEDURES

The Model Evaluation Program (MEP) was initiated in 1973 by the

Acoustic Environmental Support Detachment. Most of the work was per-

formed during the 1973-1975 time frame, until AESD was moved to NSTL

Station. Formal publications describing MEP procedures are not avail-

able, but accuracy assessment methods are discussed in a draft report by

15
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Table 10A. Averages of Absolute Means and of Standard Deviations
Over All Cases and Range Intervals (Standard of Comparison:

Hays-Murphy Experimental Data).

AP2
NORMAL MODE 0.9 3.3

CONGRATSV 2.4 4.5
COHERENT (1.2) (3.5)

CONGRATS V 1.7 2.0
INCOHERENT (0.9) (1.8)

FACT/FNWC 1.2 2.0
SEMI-COHERENT

FACT/NUSC 1.1 2.5
COHERENT

FACT/NUSC
SEMI-COHERENT 1.2 2.4

FACT/NUSC 1.3 1.7
INCOHERENT

FFP
1/3-OCTAVE 3.6 2.6

GORDON 0.6a 3.4a
NORMAL MODE

LORA 1.9b  4.7b

COHERENT (1.5) (4.6)

LORA 1.4b  1.5b
SEMI-COHERENT (1.1) (2.7)

LORA 1 .5 b 2.2b

INCOHERENT (1.0) (2.2)

NSWC
NORMAL MODE !.2 4.0

PLRAY 1.1c 2.3c

SEMI-COHERENT (1.4) (2.4)

(This reproduction has been abbreviated.)

Figure 8. (From Lauer and Sussman [1979]).
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Table 13. Average Run Time Per Case.

No. of Points
Model Average Run Per Prediction

(Computer) Time Per Case (to 200 km) Remarks

AP2 Run time is frequency
(CDC 6600) 60.6 sec 400 dependent.

CONGRATS V Includes both coherent
(UNIVAC 1108) 42.2 sec 200 and incoherent phase addition

in each instance.

70.0 sec 400 Resubmission.

FACT/FNWC Includes calculations other
(CDC 6500) 25 sec 216 than those needed for propa-

gation loss. Also, calculations
were carried out for 250 points
(125 nm).

FACT/NUSC
(UNIVAC 1108) 2.5 sec 200

FFP (CW) Run time is frequency depen-
UNIVAC 1108) 6 min 13 sec 2372 dent. FFP (1/3 octave band

average) run time is not in-
cluded, since this is not a
normal use of FFP. Calcula-
tions were carried out for
4096 points (345.2 km).

(This reproduction has been abbreviated.)

Figure 9. (From Lauer and Sussman 19791).
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Table 14. Storage Requirements.

Storage Required

Instruc-
Model Computer tions Data Total Remarks

AP2 CDC 6600 20000 For 500 Modes

CONGRATS V UNIVAC 1108 19000 21000 40000 Including Plot Routines

FACT/FNWC CDC 6500 60000 "Estimated at 60000
Words Exclusive of Input/
Output Functions"

FACT/NUSC UNIVAC 1108 14121 7734 21855 Without Plot Routines

FFP UNIVAC 1108 18563 33009 51572 Without Plot Routine

GORDON NORMAL CDC 1110 53000
MODE

LORA UNIVAC 1108 38000

NSWC NORMAL CDC 6500 18900 "45000 Octal Exclusive
MODE of Input/Output"

PLRAY CDC 6600 20480 "Core Storage, 20480
Words (50,000 Octal).
(This program has recently
been revised to reduce the
core requirements) "

RAYMODE X UNIVAC 1108 2801 3195 5996 Without I/O, w/o system
2912 3320 6232 With I/O, w/o system
3877 3549 7426 Without I/O, with system
8536 5579 14115 With 1/O, with systern

RAYWAVE II UNIVAC I 110 37000

RTRACE CDC 3800 58100 "Including Input/Output
and Library Functions"

(This reproduction has been abbreviated.)

Figure 10. (From Lauer and Sussman 1979]).
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Cavanaugh [1974],6 and software documentation is contained in a memo-

randum by Stieglitz [1974].
7

Although there are many similarities between POSSM and MEP

accuracy as-assment procedures, there are two features of the MEP

approach significantly distinctive to require separate review. The

first feature is somewhat philosophical and pertains to a general analy-

sis of errors. The second is a specific technique designed to analyze

the range-dependence of errors. Both of these features are discussed in

detail in the report by Cavanaugh [1974].6

3.2.1 ERROR ANALYSIS

The differences between measured and predicted loss form a

Nsequence of observed errors {eo}1 , there being N sample ranges. Each eo

in the sequence is treated as a random variable having a range-indepen-

dent distribution. Moreover eo is assumed to be the sum of two indepen-

dent random variables, that is

eo = em + ep,

6. Cavanaugh, RC, Transmission Loss Model Evaluation Package, Part I:
The Approach, Acoustic Environmental Support Detachment
(unpublished report), I May 1974.

7. Stieglitz, R, Informal Documentation-Model Evaluation Package,
Acoustic Environmental Support Detachment memo AESD:RS:dl of 28
Jun 1974.
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where em represents measurement error and e represents prediction

error, em can be broken down into
Fm

em ei + es ,

r where ei represents error related to model input and es represents error

associated with source level and processing. Each of these errors can

be broken down further until all possible measurement parameters are

accounted for. The level of error breakdown is dictated by the level of

completeness of the measurements. Far too often, however, error bounds

on such parameters as source depth, receiver depth, source level, and

processing errors elude careful measurement, leaving only visceral

confidence levels to rely on. In such circumstances an estimate of

prediction error, ep, can be obtained by resorting to the first-level

formul ati on,

ep = eo - em,

where em is obtained from an ensemble of measured data sets.

These error analysis procedures are not difficult to implement,

at least not conceptually. Unfortunately, not all measured data sets

are complete enough to allow reasonable parameter estimations to be

determined. Cavanaugh illustrates, by way of example, two approaches to

the parameter estimation problem. In each case, however, a knowledge of

error distributions is assumed. In this respect the error analysis

methodology is incomplete, and further work in this area is desirable.
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A. 3.2.2 RANGE DISPLACEMENT ERROR

Cavanaugh introduces a procedure to account for errors asso-

ciated with reported range values. The motivation for such a procedure

derives from his error analysis development. However, the procedure has

value independent of such a formulation. In particular, if two or more

models are under evaluation and each exhibits a feature (e.g., CZ)

displaced in range from that exhibited by measurement (see figure 11),

then a quantitative measure of such displacement is desirable for each

model.

The following interpretation of this procedure is reminiscent

of "windowed" cross-correlation (see figure 12). For a given sample

range, say Rn, the measured result is compared with predictions gener-

ated at several ranges within an interval covering Rn. The range dis-

placement is then found for which the error is a minimum. This proce-

dure is repeated for each sample range (or range interval). From the

resulting set of range displacements, a histogram is generated depicting

the frequency (or percent) of minima versus displacement. If the sample

ranges are equispaced by, say, AR, then the set of range displacements

consists of integers representing the number of AR bins displaced from

the sample ranges. The range-displacement bin with the maximum fre-

quency corresponds (more or less) to the lag-index of maximum cross

correlation. If one bin has a frequency significantly greater than all

other bins, then a translation bias is evident.
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Actually, if a strong bias exists, it is readily apparent

from visual inspection of superimposed plots. However, the range

displacement error procedure provides a numerical estimate of the bias

and allows model-to-model comparison.

K Examples of some of the outputs available from the AESO Model

Evaluation Package are presented in figures 13 through 15 [after

Cavanaugh, 19741. 6
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Figure 13. Standard comparative output.
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4.0 MEASURES OF CLOSENESS

The typical approach taken in "goodness of fit" testing of

linear regression models entails comparing a statistic derived from

residual errors with a "critical" value. If the critical value is

exceeded, the model is rejected as a good predictor of the observations.

Higher-order models are successively tested in this manner until the

derived statistic falls short of the critical value. Associated with

the critical value is a parameter called the level of significance.

Thus, a model that satisfies the test criteria does so at a pre-

specified significance level.

The objectivity of this approach is appealing and is exploited

in section 5. However, there are intuitive measures of closeness which

deserve review irrespective of their subjective nature. The accuracy

measures reviewed in this section derive from elements of classical

statistics, real analysis, and the figure-of-merit approach to sonar

systems analysis.

4.1 MEASURES SUGGESTED BY CLASSICAL STATISTICS

Quantities employed in classical analysis-of-variance (ANOVA)

and regression procedures are exploited here as candidate measures of

closeness. The utility of these quantities may be questionable under

conditions which violate their underlying assumptions. However, the

degree to which an assumption is violated can be determined, thereby

providing a measure of credibility. As a minimum, most classical pro-

cedures require data samples to be independent and identically dis-

tributed. For example, the one-sample Student's t-test requires the
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data to be normally distributed. Actually, a departure from normality

is less cause for concern than either the lack of independence or a

noticeably unstable variance. In some cases, the effects of contiguous

correlations can be mitigated by means of decimation, thus reducing the

original data set to a subset of "independent" samples. If range-

dependent trends show up in the residual errors (or their mean or vari-

ance), the simplest procedure to circumvent trend effects entails little

more than confining calculations to intervals of (relatively) constant

variance.

4.1.1 REMARKS CONCERNING CALCULATIONS

More often than not, replicated data sets are not available, or

conditions necessary to allow the assembly of independent data sets into

ensembles are absent. In either case, the degrees of freedom desirable

in calculating measures of closeness may well be less than optimal.

Such circumstances necessitate the development of procedures appropriate

for single-event data. An event, in this context, refers to data ac-

quired along a single radial track, that is, a source closing toward or

opening away from a stationary receiver at constant bearing.

Quantities calculated for both single-event and ensemble data

are similar, and are discussed in the following sections. The idea

behind these computations is to generate quantities that reflect the

degree of closeness between predictions and measurements.

Quantities that can be routinely calculated as measures of

closeness are based on residual errors obtained by taking the difference
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between measurements and predictions. Let L n denote measured propaga-

tion loss interpolated at sample range Rn9 and let Ln denote the corres-

ponding prediction. The residual error en, is

en = Ln - Ln
en Ln Ln*

The sequence obtained by calculating a residual at each sample range Rn,

n=1, 2, ..., N, forms the basis for the following sample statistics

=>en/N mean

S2 =1(e n - e)2/(N-1) variance

= (en+1 - /(N-1) mean square successive difference

Measures of closeness commonly employed to assess the accuracy

of linear regression models are:

(1) standard residual (RMS) error

n

(2) correlation coefficient

Y,(L n- A(

V >*_(Ln - [)(Ln -n )
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and

(3) ratio of variances

R2  I

J(Ln L)

where L is the mean value of measured data.

These expressions require slight modification for predictions

generated by deterministic models vis-a-vis regression models. In the

expression for Se, N-k reflects the degrees of freedom, where k is the

number of model coefficients estimated from data. For the class of

deterministic models of interest here there are no "fit" coefficients,

in which case k=O is appropriate. The mean L used in the expressions

for P and R is the same for both predictions (via regression) and

measurements as a consequence of the least squares criterion. However,

for deterministic models there is no such criterion so that generally

S(Ln - n) I 0. There is temptation to simply replace (Ln L) by

(In - L). Such a modification unfortunately affects the sensitivity of

p significantly and reduces R2 to nothing more than the ratio of predic-

tion variation to measurement variation. Thus the expressions for P and

R2 may not be especially appropriate for acoustic model evaluation.

4.1.2 SUPPLEMENTAL MOMENTS

Global measures of closeness generated by single-event data are

likely to indicate a significant lack of fit when there are distinct

feature displacements. What is really needed is a "local" or range-
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sensitive measure of closeness or several such measures. The need for a

range-sensitive measure manifests itself in the features evident in most

plots of propagation loss versus range. These features, representing

departures from monotonicity, are subtle or even nonexistent for bottom

limited situations, but are usually evident in RSR situations and in

data processed coherently. Of immediate interest is the problem of

assessing a model's ability to predict the location, width and magnitude

of convergence zones. No single statistic or measure of closeness can

perform this task. More than likely, a distinct measure is needed for

each feature of interest.

Thus, as a matter of routine, global measures should be supple-

mented by sequentially-generated first and second order moments. These

moments span only a few contiguous sample ranges, thereby serving as

local measures of closeness. They also reveal the statistical nature of

the residual errors as a function of range.

For data acquired under bottom limiting conditions, supplemen-

tal moments may be routinely calculated over subsamples of convenient

size. The calculations assume a less routine character, however, when

the measurement data abound in prominent features such as convergence

zones. For such cases care is exercised in selecting subsamples to

assure that no subsample is comprised of data propagated via both bottom

reflected and deep refracted paths. This constraint is applied to both

measured and predicted data to avoid excessively large residuals result-

ing from feature nonalignment. The subjective nature of this procedure

potentially accedes to the unfortunate circumstance that the resulting
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measures of closeness obtained for one model will not necessarily be

commensurate with those obtained for another model.

Both global and sequentially generated moments can be used to

generate confidence limits or bands about the mean residual error. If

the variance is relatively constant then the 100 (1-a)% level global

confidence limits may be determined from

± (s//W)tla/2 (N-1)

where tl _ 2 (N-1) is obtained from a table of fractional points for the

t distribution. If the variance definitely wanders with range then a

global confidence interval is not too credible. Instead, local confi-

dence limits for contiguous subsamples are more appropriate. For sub-

thsamples of size p the confidence limits for the k subsample are given

by

ek ± (Sk/P) t1-a/2 ( p - I )

where

ek = e /p
k In

S' >(en - 'k)21(_

and the summations extend over p residuals about ek"

.. . . . .. .. . . .. . . mm . . . . . . . r3 1-



4.1.3 SYNTHETIC ENSEMBLES

The total collection of events (or runs) obtained during a

given experiment sometimes contains events demonstrating sufficient

similarity among their measurement conditions to qualify as pseudo

replications. Ensembles synthesized from replications (actual or

pseudo) are particularly desirable for model evaluation because they

provide a statistical base that allows meaningful point-by-point com-

parisons.

A matrix of ensemble data is formulated as:

EVENTS (OR RUNS)

m 1 2 ... M

n

R1  1 el, e12  ... elM

R2  2 e21  e2 2  ... e2M

SAMPLE
RANGES

RN N eN1 eN2 ... eNM

The elements enm of the residual error matrix are formed by subtracting

the prediction Ln from the measurement Lnm interpolated at range Rn from

data recorded during event m. Mean values and mean squares are calcu-

lated in accordance with classical one-way analysis of variance (ANOVA)
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procedures, where the range indices correspond to treatments or groups

and the event indices correspond to replications. However, instead of

testing the hypothesis of similar group means, the various mean squares

are accepted as the quantities of interest, that is, local and global

measures of closeness.

The range sensitive and global means are:

en = enm/M (range sensitive)

m

and

n . /N (global).

n

The treatment mean square is given by:

ST2 = M s(en. _ e")2/(N-1)

n

and quantifies the departure of the mean residual error obtained at each

sample range from the global mean. The sequence of mean squares given

by:

Sn2 (enm- n) 2/(M-1) (n=1,2,...,N)

m

provides a set of local measures of closeness in that a distinct value

is obtained for each range or range interval. These measures are not
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affected by variations in distribution (or distribution parameters) with

range. Rather, their credibility depends on the distributional integ-

rity across all events at a given range. Averaging this sequence over

all ranges yields the so-called residual mean square, which also serves

as a global measure of closeness.

Mean square successive differences may be calculated for en-

semble data in the same manner as is done for single-event data. The

expressions are identical, the difference being that en is replaced

everywhere by En.' the average over events.

A global confidence interval for "ensembled" data may not be

especially credible since both the mean and the variance of the re-

siduals typically wander with range. However, if the events comprising

an ensemble have been selected properly, then confidence intervals

calculated for either each sample range or a select few are appropriate.
s2 d t 22

The sample variance Sn. is distributed as /(M-1) and under certain

assumptions the statistic

n. /(a n//M-
n. n

has a t-distribution with M-1 degrees of freedom. As a consequence, the

boundaries of a 100(1-a)% confidence interval are given by en +

(Sn/'M)t I_/2 (M-I)3
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4.2 DISTANCE MEASURES

4.2.1 SIMPLE METRICS

An intuitive notion of a measure of closeness is some kind of

distance measure. In particular the distance between measurements and

predictions may be dealt with in terms of a distance function called a

metric. A metric associates with each pair of points (x,y) a real

number d(x,y) which satisfies certain axioms. A detailed discussion of

this notion is not presented here (see for exanwple: Royden [19681).8

The important point to be aware of is that a metric quantifies the

degree of closeness of two points. Some common examples of metrics are:

}i dl(LL ILn n  lenI

n

d2(L,L) = max {ILn LnI} = max (Ie n}
n n

d3 (L,L) L n e ne

Note that once a particular metric has been chosen the close-

ness of predictions and measurements is expressible absolutely. Unfor-

tunately, accuracy in the context of model evaluation must be express-

ible relative to something. Unless that something is universally

familiar the resulting expression of accuracy is not too meaningful.

8. Royden, HL', Real Analysis, Macmillan, 1968
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Consequently the productive utility of metrics as accuracy measures

resides within the realm of comparative evaluation. That is, the accur-

acy of one model relative to that of another model can be assessed by

comparing their respective metric values derived from a common set of

measurements. Corresponding to a set of N sample ranges, R1, R2, ... ,

RN, let x = (xI , x2, .... XN)' denote a vector of measurements and let

Yl = (Y11, Y12 ' "." YlN)
'  and Y2  -- (Y21 ' Y22  ... Y2N)' denote vectors

of predictions generated by model one and model two. For any metric

d(x,y) model one is closer to the measurements than is model two if

d(x,y I ) < d(xY 2 ).

If this inequality persists regardless of which set of measurements

enters into the comparison, then the results are conclusive. Otherwise

the procedure is inconclusive, or, at best, is resolvable by resorting

to methods of statistical inference.

4.2.2 AN ENSEMBLE MEASURE

This example is taken from the rapidly growing methodology

known as pattern recognition. The particular method summarized here is

described in more detail in the text by Tou and Gonzalez [1974]. 9

Actually, the following measure is one of similarity in that it is

sensitive to features characteristic of the data tested against.

9. Tou, JT and Gonzalez, RC, Pattern Recognition Principles, Addison-

Wesley, 1974.
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Let Lnm denote measured loss at range Rn for event (or run) m,

and let In denote the average over all events at range Rns that is,

n. r .

m=1

If Ln denotes predicted loss, then a measure of similarity between the

vector of predictions L'=(El, 12, .. ,L~ and the vector of means D'

=(LI, L21 ... IN.) is provided by

D2 (L - Qi C- (I

where

C11  C12  . CiN

C

CNl CN2 .. CNN

and

= (im - i.)(Ljm - Ij)

m
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The advantages offered by this measure over those based on sums

of squares or nonparametric procedures are not readily apparent, but an

obvious disadvantage is the effort required for implementation. Indeed,

the problem of assembling an ensemble of events all belonging to an

identifiable class is formidable in itself. Add to that the time-con-

suming procedure of large matrix inversion and the method loses much

appeal, no matter how well it performs. On the other hand, if applica-

tion of the D technique is confined to range intervals of "reasonable"

size, then the computational load becomes less demanding.

The D2 technique is appropriate for determining which one of a

collection of models is "closest" to an ensemble of measurements. Thus

its utility in model evaluation would be limited to comparative proce-

dures. The problem with such procedures is that the relative ranking

obtained from a given application of the test is itself a random vari-

able. Consequently, several independent applications are necessary to

substantiate conclusions.

4.3 AN FOM APPROACH

The majority of methods reviewed here are based on comparing

values of loss at a given range. Inverting this procedure by comparing

ranges at a given value of loss is just as valid. This inverted proce-

dure is reminiscent of figure-of-merit (FOM) analyses. For nonrever-

berant situations the FOM for a given set of system and target param-

eters is independent of range and equals the propagation loss that just

satisfies the sonar equation. Corresponding to this value of loss is
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the range (or set of ranges) at which target detection is just achiev-

able. Applying this approach to propagation loss model evaluation,

accuracy assessment can be based on some measure of agreement between

measured and predicted ranges corresponding to prespecified values of

loss.

The following techniques for implementing the "FOM approach"

are suggested by concepts elementary to Lebesque integration. Let the

ordinate axis of a loss-versus-range plot (transmission loss diagram) be

divided into K intervals delineated by the levels, say, yo < yl < ...

< YK' where yo.< min{min (Ln), min (Ln) and YK > max{max (Ln), max

(Ln)}. For the kth interval let range sets Ek and Ek be defined by

Ek = {RnIYk_ -< Ln < yk }

tI

and

Ek {R nlYk 1 < Ln < kI

If m(E) denotes some "measure" of E, then a measure of closeness is

provided by

K

m(Ekn Ek)

k=1
Y= K

m(Ek)

k=1
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Two simple measures are suggested. Let m(e) denote the number

of points in E. Then for Ek and Ek defined as above, y is the ratio of

the number of points contained in both UEk and UEk to the number of

points contained in UEk. Since (UEk)n(UEk) = U(EklEk) and m[U(EkflEk)] _

zm(EknEk) and m(Ek nEk) < m(Ek) then 0 < y < 1.

As a second measure let m*(E) denote the sum of lengths of the

shortest intervals containing the points in E. Then a measure of close-

ness, Y*, is obtained as above but with m replaced by m*. The measure

m* (formerly called the Lebesque outer measure, see for example Royden

[1968])8 is not quite as easily machine implementable as the counting

measure, m, but it is probably more appropriate for data sets of low

sample density.

°4
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5.0 STATISTICAL TEST PROCEDURES

The measures of closeness discussed in section 4.1 are quan-

tities commonly employed in classical parameter estimation and hypothe-

sis testing procedures. In this section those quantities and other

statistics are exploited within the the framework of hypothesis testing.

The discussion begins with some remarks about hypothesis tests and the

assumptions necessary to implement them. Section 5.2 addresses the

problem of testing one model at a time, and section 5.3 presents proce-

dures appropriate for comparatively testing two models.

5.1 PRELIMINARY REMARKS

The statistical test procedures reviewed in sections 5.2 and

5.3 address specific hypotheses. A statistical hypothesis can be a

statement about a distribution function or, more typically, one or more

t of its parameters. Some of the procedures reviewed here make no assump-

tions about distribution functions. Instead, the hypothesis addresses

some characteristic of the population from which a sample is drawn.

In the framework of a null hypothesis (Ho) versus some alter-

native (Hi), most of the tests discussed here focus on one of the

following three statements:

Ho:P=O versus H1 :P>O,

or Ho:P=O versus H2:u<O,

or Ho:P=O versus H3 :P O.

All of these statements involve a location parameter P (eg, mean or

median). In each of the first two statements Ho is to be tested against
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a one-sided location alternative (H1 or H2 ), whereas in the last one Ho

is to be tested against a two-sided location alternative (H3 ). The

alternatives H1 and H2 are preferable to H3 as long as the location bias

is suspected a priori.

To test whether or not to reject Ho requires a test statistic,

say T, which is some function of sample random variables. A decision

rule 4 facilitated by the notion of a rejection (or critical) region,

the bounds of which are called critical values. For example, to test

H o:u=O versus HI:u>O, a bound ta is specified such that Ho is rejected

if T > ta The critical value, ta, is associated with the test's signi-

ficance level, a. Specifically, t and a are related by a probability

statement of the form

a Prft>t_ Q=0 P0 (t>ta)

where t symbolizes all possible realizations of a random process of

which T is a particular sample. Common values of a are 0.1, Q.05 and

0.01; thus the probability of incorrectly rejecting Ho is kept small.

Most of the statistical tests discussed here are either

"paired-sample" tests or "two-sample" tests. In those cases where both

measurements and predictions are sampled at the same range values, a

paired-sample procedure is appropriate. Paired-sample procedures are

based on residual errors defined as point-wise differences between

measurements and predictions. Two-sample procedures, on the other hand,
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are based on the two sequences obtained after removing gross range-

dependent trends from both measurements and predictions.

Let {LmI , denote a sequence of M propagation loss measurements

at ranges Rm, m=1,2,...,M. Similarly, let {^n }I , denote a sequence of N

predictions. If M = N and the sets of range values coincide, then a

"paired-sample" sequence can be defined as

{e le = L - Ln, n=1,2,...,N.

n n n n

For many measurement data sets, the "measured" ranges are not integer

valued and uniformly spaced. Consequently, a paired-sample sequence can

be formed only by means of interpolation. If for some reason inter-

polation is undesirable, then resort must be made to "two-sample" proce-

dures.

For either situation, a statistical model is necessary to

formulate hypotheses for testing. The simplest model assumes that the

expected value of measured losses, Lm, consists of a systematic compo-

nent, say fm' and a random component, say Pm' so that

Lm = fm +

Similarly, the expected value of predicted losses, Ln, consists of a
A

deterministic component, fn' a "random" component )in, and a model error

component, say a, so that

A A A

Ln n+IPn+ •
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The latter component, 6, is the parameter to be tested. The other

components are assumed to be identical in the sense that fm fm for

coincident sample ranges and the distribution of v is identical to the

distribution of u.

This formulation is admittedly simple inasmuch as d must absorb

any discrepancies in assumptions regarding the other two components. In

fact, of course, the deterministic component is the one of primary

interest, and the random component only serves to create difficulty in

the matter. Neither component is likely to conform with the model

precisely, and hence 6 is not likely to remain constant as assumed.

Nevertheless, the test objective is to determine if 6 differs from zero

significantly, so that modest departures from the assumed model should

not seriously impair the credibility of a test for a shift in location.

There is a problem with the statistical model assumed for
predictions that cannot be overlooked. For a purely deterministic

model, the random component is absent for a particular event. In fact,

a random component is apparent only in association with an ensemble of

predictions generated in accordance with a Monte Carlo scheme (see

Solomon and Merx [1974]10 and for a slightly different point of view

10. Solomon, LP and Merx, WC, Technique for Investigating the
Sensitivity of Ray Theory to Small Changes in Environmental Data,
J. Acoust. Soc. Am. 56:1126-1130, 1974.
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see Dozier and Tappert [1978]).ll Actually, range-dependent models can

simulate, to a limited degree, some of the randomness likely to be

incurred during a single measurement event. The same objection, how-

ever, does not apply to the statistical model assumed for measurements,

since during a given measurement event there is randomness in both space

and time. As a consequence, the significance of a test cannot be

attributed entirely to model error.

Applying the assumed statistical model to paired-sample data

yields a model for residual errors of the form

I n = Ln - Ln = 6, for all n.

For data that cannot be paired, two sequences are constructed: one for

measurements, say

xm =L

and another for predictions, say

Yn = Ln - L= n + 6,

11. Dozier, LB and Tappert, FD, Statistics of Normal Mode Amplitudes in

a Random Ocean. I. Theory, J. Acoust. Soc. Am. 63:353-365, 1978.
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where 'C and t are range-trend-removal functions. Since both cm and ^n

are assumed to be independent and identically distributed "random"

variables, any significant differences in the distributions of x and y

are assumed attributable to 6. Thus, for both paired- and two-sample
V

circumstances, the null hypothesis takes the form

Ho:6 : 0,

and the alternative takes one of the forms

Hi:6<O, H2 :6>O, or H3 :610.

For conscientious objectors unwilling to accept the frailties

of the assumed statistical model, the hypotheses can be stated in terms

of distribution functions. For example, in the two-sample case the null

hypothesis can be stated as

Ho:Fx(z) = FyW,

which can be tested against an alternative, say HI, of the form

Hl:Fx(z) = Fy(Z-6)

In this way the sampled data is not explicitly broken down into sys-

tematic and random components, although the annoying issue concerning

the assumed "random" character of predictions remains. The issue of

"random" predictions notwithstanding, the remainder of section 5 is

devoted to applying various statistical procedures to test the closeness

of measurements and predictions.
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5.2 ONE-MODEL TESTS

The procedures discussed in this section may be applied to

statistically assess how close a particular model predicts what is

observed. Again, for emphasis, the remarks of section 5.1 concerning

r the "random" character of predictions are reiterated. Even though

random predictions can be generated using Monte Carlo methods,

predictions corresponding to a particular event do not emulate the

random process observed during a measurement event. Therefore, if a

test infers discrepancy not all of it is necessarily attributable to

model error.

The first four procedures reviewed are taken from classical

statistics, wherein certain assumptions pertaining to distributions must

be satisfied. The remaining procedures are nonparametric or distribu-

tion-free, and are subject to less severe restrictions.

5.2.1 REGRESSION MODEL TEST

In the following discussion a lack-of-fit test commonly applied

to linear regression models (see, for example, Draper and Smith

12
[1966]) is reviewed and examined for its applicability to the task of

assessing the accuracy of acoustic models. For a first-order linear-

regression model of the form

SL + #(R-R) ,

1Z. Draper, NR and Smith, H, Applied Regression analysis, Wiley, 1966.
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the total sum of squares is partitioned as

(Ln- )2  (Ln- )2 + J(CR )2 .

The sum of squares on the left-hand side accounts for variation about

the mean and has N-1 degrees of freedom. The first sum of squares on

the right-hand side accounts for variation "about regression," and the

second accounts for variation "due to regression" and has only one

degree of freedom. The sum of squares about regression when divided by

the remaining degrees of freedom is referred to as the residual mean

2
square and is denoted here by SR2 . Thus,

S2  = 1 (L - Ln)2
R T-72 Z'n n

For an ensemble of M measurement events, each with N sample

ranges (N>2M), the mean square due to "pure" error is

(Ln _ 2

S 2 = n m -L n.

e N(M-1)

The residual mean square for such an ensemble is

2 m n(Lnm L)2

R M(N-2)
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The F statistic given by

S2 -S2

S R SeF= 2

Se

has N-2M degrees of freedom in the numerator and N(M-1) degrees of

freedom in the denominator. Thus the model is rejected at the a signi-

ficance level when

F > F1 -a (N-2M, NM-N)

where FIa(N-2M, NM-N) is obtained from a table of percentage points of

the F distribution.

This test can also be applied to higher-order linear regression

models for which k coefficients are determined from measurement data.

The only apparent change necessary to the above expressions is in the

"numerator" degrees of freedom. Thus N-2M is replaced by N-M(k+I). At

this stage there is strong temptation to extend the applicability of

this test to nonregression models merely by adjusting the degrees of

freedom. Deterministic models of propagation do not require any

coefficients to be estimated from propagation measurements. Therefore,

with k=O the appropriate degrees of freedom become N-M.

Unfortunately, a change in the degrees of freedom is not the

only change that occurs. The partitioning of the total sum of squares

undergoes a modification as well. For linear regression models the sum

of cross products, i.e., r(Ln -1)(En " E)' vanishes as a result of
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certain simplifying relationships. Similar relationships do not hold

for deterministic models. The additional sum of cross products tends to

compromise the integrity of the F statistic, since the residual mean

square no longer accounts for all of the variation "about prediction."

In fact, a deceptively small value could be generated by the F statis-

tic, even if a large discrepancy exists between measurements and pre-

dictions. Only if the mean value of predictions equals (or is very

close to) the mean value of measurements, can this test be applied with

any confidence.

5.2.2 STUDENT'S T TEST

The t test is probably the most widely used test for equality

of means. Let p and a2 denote the population (assumed normal) mean and

variance of residual errors. To test the null hypothesis u=O against

the two-sided alternative pAO at the a significance level, the t statis-

-tic, under Ho, is

t eS//N-

and the rejection region is equivalent to

I tl > tl1-a/2(N-1) •

The sample estimates e and s2 are given by

= 1 Se n , lwhere en Ln -L n,

50



and

S 2  1 2"_ .

s2  T >J(en -~2

The appropriate value of tl1 ./2(N-I) is obtained from a table of frac-

tional points for student's t distribution.

For many experimental situations the conditions of the central

limit theorem are approximately met. As for the situation at hand, both

mean and variance are likely to wander with range and the en are not

necessarily independent for neighboring samples. However, in spite of

such probable shortcomings, certain precautions can be taken to enhance

the validity of the t test. Since the t distribution approaches norm-

ality (which reflects less uncertainty in s2) as the degrees of freedom

(N-1) increase, then a large sample size is desirable. On the other

hand, constancy of mean and variance is more likely to sustain over

contiguously grouped samples of small size. Thus the optimum situation

is likely to be achieved by applying the test to large samples that

preserve an acceptable degree of homogeneity.

5.2.3 CORRELATION TEST

A test commonly employed to determine the degree of relation-

ship between two random variables is based on the sample correlation

coefficient. Let xn and yn denote values of measured and predicted loss

(with range trend removed), then the sample correlation coefficient is

given by
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xnyn

2nrxy=

This coefficient by itself provides a measure of closeness normalized to

the range -1<rxy<l, with rxy = + 1 indicating a perfect linear relation-

xyyship between x and y. Values of ry close to zero are less conclusive,

in that either there could be a nonlinear relationship between x and y

or the data points are simply too scattered for any relationship to be

discernible. Questionable values of rxy can be tested for statistical

13significance (see p. 413 of Brownlee [1960] , or p. 128 of Bendat and

Piersol [19711)14 by comparing zv4F- against z,/2, where

2z = ln[(1 + rxn)/(l - rxy)],

and z,/2 is obtained from tabulated values of the standardized normal

distribution function. The hypothesis to be tested is that x and y are

t uncorrelated. Thus, if IzAF-I1>za/2 then x and y are correlated (ie,

not uncorrelated) at the a significance level.

13. Brownlee, KA, Statistical Theory and Methodology in Science and
Engineering, Wiley, 1960.

14. Bendat, JS and Piersol, AG, Random Data Analysis and Measurement
Procedures, Wiley-Interscience, 1971.
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5.2.4 NONPARAMETRIC PROCEDURES

The remarks at the beginning of section 4 pertaining to "good-

ness of fit" testing were not intended to apply strictly to classical

tests of statistical inference. They also apply to nonparametric tests

as well. That is, the comparison of predictions-to-measurements or

measurements-to-measurements can be formulated in terms of significance

level tests based on nonparametric procedures. Details of these proce-

dures are widely discussed in the literature (eg, Baker [1974], 15

Gibbons [19711,16 Hajek [19691,17 and Middleton [19691)18 and are only

briefly reviewed here.

5.2.4.1 A CHI-SQUARE TEST

The chi-square test is commonly employed in so-called "good-

ness-of-fit" procedures. Essentially this test compares distribution

functions vis-a-vis testing for differences in certain populaiion param-

eters. If a test results in rejection, the reasons for rejection are

not at all specific. Thus, this test provides a measure of cluseness

only if the meaning of close is interpreted in a broad sense.

15. Baker, CR, Some Statistical Tests for the Analysis of Sonar Data,
Department of Statistics, University of North Carolina, Report
B-74-3, Jun 1974.

16. Gibbons, JO, Nonparametric Statistical Inference, McGraw-Hill, 1971.
17. Hajek, J, Nonparametric Statistics, Holden-Day, 1969.
18. Middleton, D, Acoustic Modeling, Simulation, and Analysis of Complex

Underwater Targets I, Statistical Evaluation of Experimental Data,
Applied Research Laboratories, U. of Texas at Austin, ARL-TR-69-22,
26 Jun 1969.
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Let (xn) and lyn) denote sequences of size N consisting of

range-detrended measurements and predictions. The sequence of predic-

tions [)N , is divided into K categories (dB bins) and the number Mk ofink

Yn that fall into each is determined (essentially a histogram). Sim-

ilarly, let Nk denote the number of xn that fall into the kth category,

then

K ( M) 2
( NR

k4k=1

is approximately chi-square distributed with K-i degrees of freedom
(see for example p. 9-4 of Natrella [1966]).19  If x2 ci(2 1) the

measurements are concluded to differ from the predictions at the a

significance level.

5.2.4.2 KOLMOGOROV-SMIRNOV TEST

The Kolmogorov-Smirnov (K-S) test is similar to the Chi-Square

test in that it tests for differences in the distributions of x and y.

Again let xn and Yn denote range-detrended measurements and predictions.

In this case, however, the two sequences do not have to be of the same

size.

Let X(m) denote the m
th smallest element of the sequence {xm) M

19. Natrella, MG, Experimental Statistics, National Bureau of Standards
Handbook 91, 1966.
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Then

denotes the ordered sequence of measurements. Similarly,

{Y(n)Iy(1) < Y() < (l

denotes the ordered sequence of predictions. The corresponding sample

distributions, denoted by SMWx and TN(x), are defined by

10 x < xl
SM(x) = k/M x(k)< x < x~k~)

and

0 x < Y()

TN(x) k/N ,Y (k)- < C (k+l)

1 x > Y(N)

From these distributions is determ~ined the K-S statistic, 0, defined by

D =maxISM(x) - T N(x)i.
x

The null hypothesis of identical distributions is rejected at the

significance level if

> c

where c is obtained from tabulated values of Pr(D>c) a12.
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Its ease of use makes the K-S test one of the most popular

nonparametric procedures available. Since sample distributions are

employed, the K-S test is not sensitive to "artificially" selected

categories as is the case with the chi-square test. However, like the

chi-square test, it is indiscriminately sensitive to differences between

the distributions being tested. That is, it is as likely to infer

rejection for differences in symmetry and dispersion as it is for dif-

ferences in location. What is more, the K-S test requires that the

notion of randomness be attributed to predictions generated by a deter-

ministic model - a notion that is not entirely acceptable.

5.2.4.3 PAIRED-SAMPLE TESTS

The major advantage in using nonparametric procedures based on

paired-sample data is that no assumptions need be made regarding the

distributions of either propagation loss measurements, Ln, or especi-

ally, of predictions, Ln. Instead, the assumption is made that the

pointwise differences (residual errors denoted by en) are independent

and identically distributed over an ensemble. To clarify this assump-

tion let enm = L nm - L n, where Lnm denotes propagation loss measured at

range Rn, n=1,2,...,N, during event m, m=1,2,...,M, and Ln denotes the

corresponding prediction at range Rn. If Fnm = Pr{enm < e) denotes the

distribution function of residual error, then Fij = Fkl for i=k but

equality does not necessarily hold for ilk.

Measurements for a given event essentially constitute a time

series (but with the additional complexity of spatial variation as

well), and if densely sampled may have to be decimated so that the
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-K sample spacing equals or exceeds the average decorrelation interval.

Although such a procedure does not absolutely guarantee independence, it

is recommended as a step preceding statistical testing.

Two nonparametric procedures for paired-sample data are dis-

cussed, both of which are easy to implement. One is called the sign

test, and the other is known as the Wilcoxon signed-rank test. For each

of these tests the residual errors (for a single event) are assumed to

be of the form

en = Ln - Ln = Yn +6

where yn is a random variable with distribution unspecified and 6 repre-

sents model error. The null hypothesis, 6=0, is to be tested against

the two-sided location alternative, 60.

I
The statistic for the sign test is simply the number of posi-

tive en. Thus

N 1, x>O

K = U(en) where U(x)

n= 0, x <0

Any zeroes (en=0) are discarded and N is reduced accordingly. Each of

N
the 2 possible outcomes corresponds to a Bernoulli trial with proba-

bility, say, p. Thus the distribution of K is binomial,

k

Pr {K<k} = ( N ) pR(-p)N-n

n=O
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1

Under H p = 1/2 so that
0

k

Pr{K <k]Ho1 = )2

n=O

The test rejection region corresponds to K either too large or too

small. Specifically, rejection occurs when K > k or K < k' wherea1/2 a c/2'hr
k and k'/2 are the smallest and largest integers satisfying

N (N k,,2cIk

( 2-N < and 2 N
k=ka/2 k=O

Tables of the binomial distribution with p=1/2 are readily

available even for N fairly large. However, the large-sample normal
17

approximation is reportedly good for N > 12 (p. 108, Hajek [19693;

p. 102, Gibbons [1971]).1 6 Let

K - E (K)
z ,/var 0(K)

where Eo(K ) = N/2 and var (K) = N/4, then the large-sample test rejec-

tion region corresponds to Izi > Zl.i/2*

The Wilcoxon signed-rank statistic is given by

N

W = > r(le n)U(e n )

n=1
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where r(lenl) is the rank of lenI and

1, x>O0
U(x)

O, x <0.

Even though the U(en) constitutes a Bernoulli process, the distribution
5n

of W is not quite as straightforward as tiat for the sign test. The :-

level two-sided rejection region is equivalent to

W < - w/ 2 and W> w/

where wM/ 2 satisfies Pr{W > w./21Ho} = a/2. Tables are readily avail-

able (e.g., for 3 < N < 15, see p. 269 of Hollander and Wolfe [1973]),20

but if the residual errors are more or less symmetrically distributed

about zero, then the large-sample normal approximation is reportedly

good for N > 15 (p. 109, Hajek; 17 P. 113, Gibbons).16 The large-sample

test is the same as that for the sign test except the mean and the

variance are given by

Eo(W) =

and

varo(W) = N(N+I) 2N+I)

Z0. Hollander, "M, A Distribution Free Test for Parallelism, J. Amer.
Stat. Assoc. 65:387-394,1970.
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5.2.4.4 METHOD OF SLOPES

The method of slopes is suggested by Hollander [1970] 20 as a

distribution free test for the parallelism of two regression lines. The

liberty is taken here of extending its applicability to the case at hand

- comparing the slopes at various range points along the prediction

curve with corresponding slopes calculated from measurement data.

Denote propagation loss values by Lnm, where n corresponds to sample

range, Rn, and m identifies the data set as either measured (m=l) or

predicted (m=2). The sample ranges are assumed coincident for both

measured and predicted data sets. For each data set, a subset of sample

ranges is selected from which are formed, say, K pairs (RiR j). i j.

Slope es:Ii:ates are then computed From'i 'he K pairs, that is

bkm = (Lim - Ljm)/(R i - Rj), k=1,?,...,K.

Care must be exercised in pairing the ranges to ensure that mutually

independent slope estimates are generated for each m. From these two

sets of slope estimates, slope differences are computed of the form dk =

bkl - bk2 , The subscripts k for set 1 may be selected sequentially,

whereas the subscripts k' for set 2 are selected randomly. Finally,

the following statistic is formed

K

WK r(Idk )U(dk)

k=1

where r(IdkI) is the rank of (dkI and U(x) = I or 0 according as x>O or

<0. This statistic is the Wilcoxon signed-rank test statistic discussed
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in the previous section (see pp. 106-118 of Gibbons [19711),16 and

rejects the hypothesis of equal slopes for W either too large or too

small. Test implementation procedures are summarized in the previous

section.

The application of this method to bottom limited situations or

to many shallow water situations poses no problem, but to situations

exhibiting significant structure this approach has limitations. For

example, to test for equal slopes over a narrow convergence zone

requires dense sampling. That is, the sample size must be large enough

to support the generation of mutually independent slope estimates. To

conduct a test at the 5% significance level requires at least five slope

estimates. Thus, allowing contiguous but nonoverlapping sample ranges

to be used in calculating the slope estimates, at least ten sample

ranges are required. A minimum of ten sample points does not seem too

severe, although many data sets based on air-dropped explosives would

probably not qualify!

5.3 TWO-MODEL COMPARATIVE TESTS

The tests discussed in this section allow the relative perfor-

mance of two models to be compared against a single measurement set.

These tests offer an alternative to testing two models individually and

then comparing test results. The advantages of the two-model procedures

differ from one procedure to another. The first of three procedures

discussed is a modified sign test which tends to mitigate effects due to

large excursions in the residual errors. The second procedure contrasts

selectable threshold levels, thus allowing the measure of accuracy to be
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controlled. The third procedure compares two correlation coefficients.

Since one coefficient can be calculated independently of the other, this

procedure offers a computational advantage not available with the other

two procedures.

5.3.1 MODIFIED SIGN TEST

This procedure operates on two sets of residual errors obtained

from a sequence of propagation losses {L nN measured at ranges R

n=1,2,...,N, and two sequences {1m} N=I mN 1,2, of predictions generated

{LI n~l '

over the same range sot by the two models being compared. The two sets

of residual errors are formed by

e1n =L n -L n'

and

e2n Ln - L2n, n=1,2,...,N.

The usual residual computations (means and mean squares) can be executed

at this stage, but the following procedure tends to mitigate effects due

to large excursions in residuals. Essentially, moving averages of the

absolute deviations are compared using a nonparametric approach. That

is, let

K/2
1 l eI m= 1, 2

Cmn Ti em, n+k '

k=-K/2
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where n=K/2+1,..., N-K/2-1 (K odd). Then the statistic S defined by

" N-K/2-1

F :S = U(0 In - 2 ) ,n(x) 1 , x < 0
2n x ><0

n=K/2+1

can be employed to test the average relative displacements of the two

sets of predictions with respect to the set of measurement data. Under

the null hypothesis that the two models generate predictions that are

equally close to the measurement data, S should be neither too large nor

too small. The rejection region for this test is identical to the sign-

test rejection region described in section 5.2.4.3.

5.3.2 MINIMUM CONTRASTS

~The residual-error notation of the previous section is applic-

able in the following discussion. An error threshold value, say t, is

specified which allows the residual errors for each model to be classi-

fied into one of two categories - pass or fail. Let pm denote the

number of emn for which le mnI t (pass), and let qm denote the number

that fail. A 2x2 table is formed as follows:

Class I Class 11
(pass) (fail)

model 1 P1  ql

model 2 P2 q2
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"From this table the smallest entry is identified as a1 , and the

remaining entry within the same class is identified as a2. The ordered

pair (a1 , a2 ) is known as a "contrast pair". Table A-28 of NBS Handbook

91 [Natrella, 1966]19 gives "minimum contrasts" for N=1 (1) 20 (10) 100

(50) 200 (100) 500 corresponding to a = 0.05 and 0.01 for two-sided alter-

natives. The ordered pairs in table A-28 are labeled (A1,A2). For the

appropriate values of N and a the tabled pair (A1,A2) is found for which

Al=a1 . If a2>A2 the two models differ with regard to the thresholded

proportions considered.

5.3.3 TWO-SAMPLE CORRELATION TEST

The correlation test procedure discussed in section 5.2.3 can

be extended to comparatively test the performance of two models against

a given measured data set. The appropriate test statistic for this case

is (p. 414 of Brownlee [1960])13

(zI - z2 )/[1/(N1 - 3) + 1/(N 2 - 3 21/2

where allowance is made for different sample sizes. The hypothesis to

be tested is that the two-sample correlation coefficients derive from

the same population. Thus, the test rejection region corresponds to

large values of the test statistic.

Since the zi are calculated independently without regard for

sample size, this procedure can be employed to "remotely" compare

models.
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For example, if the correlation coefficient r (calculated atxYl

facility A) between model y, and data set x is known along with the

sample size N1 , and if the same data set x (or some subset) is accessi-

ble at facility B, then r between model Y2 and data set x can bexY2
calculated and the two-coefficient test statistic can be formed as

indicated above. Such a procedure might be worthwhile adopting for the

initial check-out stages of a new model. That is, the performance of a

new model against a given measured data set could be "statistically"

compared with the performance of an established model against the same

data set, and without the need to execute both models on the same com-

puter. However, at the initial check-out stage, benchmark tests against

closed-form solutions are preferable.
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6.0 CONCLUDING REMARKS

The preceding sections briefly summarize the current status of

acoustic model evaluation, with special attention given to accuracy

assessment methods as applied to propagation models. An attempt is made

in section 3 to capture and relate to the reader the essential attri-

butes of the methodologies developed under POSSM and MEP. The dis-

cussions presented in sections 4 and 5 are intended to demonstrate how

standard quantities and procedures from both classical and nonparametric

statistics can be applied to "time"-series data exhibiting a trend. The

various moments, metrics and test procedures discussed are readily

available in "statistical" software packages at most computer centers.

Model evaluation procedures as reviewed here are primarily in-

tended for "automated" implementation. That is, some sacrifices in

I"analytical" or "interpretive" considerations are made to allow "whole-
sale" comparative evaluation of many candidate models against a variety

t of measured data sets. As an example of an interpretive model evalu-

ation process, the reader is referred to the report by Hanna [1975].
2 1

For the most part the collective procedures of POSSM and MEP

appear to provide an adequate repertoire of techniques for evaluating

propagation models and for statistically analyzing measured data sets.

21. Hanna, JS, An Example of Acoustic Model Evaluation and Data Inter-
pretation, Acoustic Environmental Support Detachment TN-75-08,
Dec 1975.
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These same techniques, with little or no modification, should be applic-

able to reverberation prediction-measurement assessments as well. Their

applicability to the problem of evaluating noise models, however, may be

another matter.

The status of MEP software as reflected in the memorandum by

Stieglitz [1974]7 indicates a means is available to perform error

analyses in a routine manner. Even though wholesale application of

error analysis schemes may not be practical, the introduction of such

schemes to the evaluation of models against complete measured data sets

is desirable. The error analysis methodology initiated by Cavanaugh

[1974]6 needs to be complemented with replicated data sets. Without the

support of a statistically adequate data base, error analysis procedures

cannot be implemented.

Replicated data sets are also valuable for less elaborate

techniques. For example, an estimate of pure error can be subtracted

from a given measurement event to yield "nonrandom" components. Dif-

ferences between model predictions and "derandomized" measurements can

then be quantified using the methods of section 4.

As a final note the measures and procedures discussed in

sections 4 and 5 are summarized below.
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SINGLE-EVENT MEASURES

1 --

t e=i e en  /N? (Ln Ln) Mean deviation of predictions (tn)N nfrom measurements (Ln)

" s2 I (en -)2 Total mean square deviation

d~ (en I  en) Mean square successive differences

d n+1 en)

S, , k en 2  RMS error

METRICS

d eni d2  max{len1} d3 = [>ien

ENSEMBLE MEASURES

k

- en Ensemble mean - the mean error over
nm 

M events at range Rn

en en Grand mean

= M n )2 Mean square deviation of ensemble
n mean from grand mean

S2  nm en., Mean square deviation of errors.m from ensemble mean

R = I S . Residual mean square
n
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d 2  1 en+1 . en.) 2  Mean square successive differencen of ensemble means

= ( - L)' C-1 (L . £) Distance measure between vector
of predictions (L) and vector of
means (L)

STATISTICAL TESTS

CLASS ICAL NONPARAMETR IC

* Regression Model * Chi-square

a Student's t . Kolmogorov-Smirnov

9 Correlation e Sign

I Wilcoxon

TWO-MODEL TESTSt

e Modified Sign

* Minimum Contrasts

9 Two-Sample Correlation

As a final reminder, all two-sample tests require that a "random"

component be assumed for predictions as well as for measurements. Since

such an assumption is not especially credible, only those procedures

based on residual errors (paired samples) are recommended for model

evaluation. If the residuals are approximately normal, then the classi-

cal student's t test is appropriate; otherwise a nonparametric procedure

(eg, Sign or Wilcoxon) is preferred.
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